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Summary. The vibronic character of this molecular device has been studied using 
isomorphic electron orbitals. The leading role of the softest vibrational mode for 
the electron transport process is stressed by the quantum mechanical treatment 
of the rearrangement operator. The theory was used to investigate the possible 
function of the soliton valve, which has been suggested as a switching tip. The 
electronic flexibility of the cyclopropenyl radical with respect to molecular 
vibrations, which is important for the function of the molecular device, is well 
characterized by the hardness and softness of the electron structure in terms of 
the orbital energy-occupation number correlation diagram. 
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1. Introduction 

Recently, Carter has suggested the intrinsic importance of molecular tips in 
future electronic devices [1-3]. Since then many models of molecular devices 
have been proposed. In this connection, theoretical analysis of the response 
properties of molecular electronic structure to internal and external perturba- 
tions, e.g. molecular vibration and an electromagnetic field, has become of vital 
importance [4]. In particular, the microscopic vibronic interaction should play an 
important role in electron transferability in the molecular aggregates [5]. Conse- 
quently, it is interesting to investigate the vibronic structure on the basis of the 
molecular orbital method [6]. 

We have proposed a method, called the isomorphic orbitals [8, 9], which 
generalizes the Amos-Hall corresponding orbital method [7] for vibronic elec- 
tron orbitals. We have formulated the rearrangement operator in the role of an 
evolution operation [ 10] for the isomorphic electron orbitals. The rearrangement 
operator has some relationship with the nonadiabatic coupling operator for the 
dynamic Fock equation [11]. 
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In this paper, we will analyze the vibronic flexibility of cyclopropenyl radical 
which may be used as a unit of the soliton valve in a switching tip of a molecular 
device [12]. The facility or difficulty of the electron transport accompanying the 
molecular vibration is examined by utilizing isomorphic electron orbitals [8]. 
This has a theoretical connection with the Kohn anomaly in the field of 
condensed matter physics [13]. 

2. Isomorphic electron orbitals 

Isomorphic electron orbitals are given by rearranging natural orbitals [14] 
{@m(0)} and {~9(1)} at two adjacent points So and sl of the intrinsic reaction 
coordinate (IRC) [15, 16] in such a way that the overlap matrix among them 
becomes diagonal: 

<ffk(O)lff.(O) > = '~k,,, (la) 

<ffk(1) Iff~(1) > = 6k,,, (lb) 

<~k(0) I~n(1) > = ~ ~kn. (lc) 

If we take the limit Sl--,so, so that {~k(1)}-*{~k(0)}, and after that let s o be 
varied as we move along the reaction coordinate, then we can get the isomorphic 
electron orbitals {~k } which represent the smooth electron current accompany- 
ing a chemical reaction. The occupation numbers {vk } of the electron orbitals 
{~k } are defined [8, 9] as the expectation values of the first order density matrix 
p [14]. Similarly the orbital energies {~k } of the electron orbitals {~k } are defined 
[9] as the expectation values of the natural orbital Hamiltonian operator [ 17], or 
Fock operator within the Hartree-Fock approximation. 

The isomorphic electron orbitals ~k(0) and ~k(1) are represented as follows: 

ffk(1) = F, u,k¢,, (1), (2a) 
i 

ffk(0) = (1/X/~k) ~ E SmjUjk~,,,(O). (2b) 
j m 

In these formulas, Smj denotes the overlap integral and U~, and ?k denote the 
eigenvector and eigenvalue of the rearrangement operator IIR0.11 constructed 
from Smj, respectively: 

Smj = (~lm(O)l~lj(1) ), (3) 

E RiJUJk = Utk?k' ( 4 a )  
J 

~, U ik Ui~ -/ik~, (4b) 
i 

where 

Rg = ~ Sr~Smj, (5a) 

= (5b) 

Let the two points So and s~ be very close to each other. Then the Taylor 
series expansion of R U in terms of As = Sl - So is given as follows: 

R/j = R(9),j + R( 1),s As + R~ z) As z + o(As3). (6a) 
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RiP) = 61j, (6b) 
U 

R (.1) = 0, (0c) 
U 

R(2) - -  (O¢glOsiOCj/c~s) + ~ (O¢~lOsifm)(~km [O~bslOs). (6d) ij = 
m 

If  we substitute Eq. (6) into Eq. (4a), we have 

(Sij + R (2.) AsE)Ujk = U, kTk. (7) U 
J 

Then we observe that R o becomes equivalent to ~,jn(:), which satisfies 

E = ), (8) 
J 

and that the ~k is given as 
7k = 1 + 7~ 2) AS 2. (9) 

In quantum mechanical treatments of nuclear vibration, each order of the 
nuclear fluctuation is estimated by the non-zero finite value. The general expres- 
sion of the rearrangement operator may then be defined as follows: 

~/~/j = (R/j> .... (10) 

where ()av. denotes the average with respect to the quantum mechanical nuclear 
vibration. Of course the nuclear vibration is not limited to the direction of the 
reaction coordinate, and hence the fluctuation is not limited to a point on the 
reaction pathway. This rearrangement operator is Hermitian and has the follow- 
ing eigenvalues and eigenvectors: 

E R i jUjk  = Oik~k, ( l l a )  
] 

U*Oin = 5kn, ( l lb )  
i 

which are the counterparts of  Eqs. (4a) and (4b). The isomorphic electron 
orbitals are given as follows: 

~k(1) = ~ tY;k ej (1), (lEa) 
i 

~Tk(0 ) = (1/X/~--k) ~ ~ S,,j~.k~b,,(O), (12b) 
j m 

which are the counterparts of  Eqs. (2a) and (2b). In this case, we obtain the 
following orthonormal relations: 

Iffk (0)]ltkn (O) )) av. = t~kn, (13a) 

((~Tk(1) Iff,(1) ))av.-- Ok,, (13b) 

((~Tk(0) Iff,(1) ))av. = ~ 6k~, (13c) 

which are the counterparts of Eqs. ( l a ) - ( l c ) .  Occupation numbers and orbital 
energies are similarly introduced. 

It should be noted that if we consider only the zero-point vibrations at a 
stable equilibrium point, then the leading term of/~,j in Eq. (10) is given by the 
contribution of the motion along the IRC: 

/~o "~ R(9)v + { 1/(2C°min) } R(2)' (14a) 

~k = 1 + { 1/(2O9mi,)}7~ 2), (14b) 
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where (Dmin denotes the minimum vibrational frequency of the system at the 
stable equilibrium point, and where we have used the result that the IRC 
converges to the normal mode of the minimum force constant, namely the softest 
vibrational mode, by virtue of the stable limit theorem [16(b)]. This shows that 
electron rearrangement along the IRC plays a leading role at the absolute zero 
temperature in the quantum mechanical treatment. 

3. Electronic flexibility of the soliton valve 

Figure 1 shows the soliton valve which Carter has suggested as a molecular 
switching tip [ 12]. The soliton valve contains a cyclopropenyl radical fragment as 
a valve unit. The soliton passage is mediated through the dimerized ethylenic or 
allylic structure of cyclopropenyl radical. Note that the action of the valve is not 
as simple as Fig. 1 suggests. This is because there is another reaction channel in 
the 2 and 2' states of the valve in addition to the soliton passage channel 
(depicted by the dotted line in Fig. 1), and the total reflection channel (depicted 
by the broken line in Fig. 1), namely an isomeric reaction channel between the 
ethylenic and allylic structures of the cyclopropenyl radical valve unit. The 
existence of the isomerization channel was reported by the ESR experiment [18]. 
We shall discuss the electronic flexibility for the isomerization reaction channel 
of the cyclopropenyl radical to clarify this problem. 

3.1. Reaction coordinate 

An equilateral cyclopropenyl radical undergoes Jahn-Teller distortion and 
may transform to two lower-symmetry structures: ethylenic and allylic forms 
[19, 20]. The MCSCF/3-21G calculation of Chipman et al. [20(a)] indicates that 
the Cs symmetry forms are more stable than the C2~ symmetry forms, and the 
ethylenic form is a local minimum while the allylic form is a transition state for 
pseudorotation. The Cs symmetry allylic form has the single A" CH bending 
vibrational mode with an imaginary frequency which leads to the equilibrium C, 
symmetry ethylenic form. Three local minima and transition states are found in 
a period of the pseudorotation. 

2 :. t 

, .  , ; ".?, 

i ..'/ 

2 1 2' 

Fig. 1. Plausible operation of soliton valve. The soliton passage channel is depicted by the dotted line, 
and the reflection channel by the broken line 
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We are interested in the planar forms of the soliton valve. Both the planar 
ethylenic and allylic forms are unstable with respect to the out-of-plane motions 
of the hydrogen atoms, though they can be regarded as the equilibrium forms 
with respect to in-plane vibrational motions [20(a)]. Then we have six local 
minima with respect to the in-plane pseudorotation coordinate. We adopted the 
restricted pseudorotation coordinate for the equilateral triangle [21, 22] instead 
of the steepest descent reaction coordinate [ 15], and have used the UHF/4-31G 
wavefunction [23, 24]. The quality of the wavefunction is sufficient to discuss 
the response property of electrons against the molecular vibration, which is the 
object of our interest; this is because the response property is so universal as to 
allow one to neglect electron-electron interactions, as occurs, for example, in 
the theory of the Kohn anomaly and related subjects [ 13]. The GAUSSIAN80 
[25] and GAUSSIAN82 [26] programs and requisite subroutines are used in 
this study. 

The optimized C2v structures are depicted in Fig. 2. These structures are not 
stable with respect to the out-of-plane motion. Normal vibrational frequencies 
and their symmetry assignments are summarized in Table 1. We shall use the 
two in-plane normal modes of a 1 and b2 symmetries to define the restricted 
pseudo-rotation coordinate [22]. These modes correspond to the minimum 
frequencies in the plane, which play a central role in the electron rearrangement 
process, as shown in Sect. 2. 

The pseudorotation coordinate is defined by 

5Xct = Val,ct0 COS 0 "~- Vb2,ct~ sin 0, (15) 

where v,,,,~, and vb2., are the normal vibrational mode vector of ctth nucleus 
with al and b2 symmetries, respectively. The radius and the center of the circle 
are determined so as to make the carbon skeleton of the molecule form an 
equilateral triangle, when the molecule distorts along the normal vibrational 
mode of a 1 symmetry. Then the reaction coordinate is 0. The center and the 
radius are different for each ethylenic and allylic structures. A schematic repre- 
sentation of the reaction coordinate (depicted by the solid line), the cell struc- 
ture [16(b)] of the potential energy surface (depicted by the broken line) and 

H 5  1.306 i N / - ,  

C1 53.1" 
1.056 

H6 

H S ~  1.514 / j H 4  

"~, ,//~/1.369 

1.063 
H6 

Fig. 2. Optimized geometries of the planar ethylenic and allylic structures of the cyclopropenyl 
radical. Czv symmetry is assumed (in A and degree) 
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Table 1. H a r m o n i c  v ib ra t iona l  frequencies ( e m - 1 )  for the C2v 

in-plane e thylenic  and  allylic s t ruc ture  o f  the cyc lopropcnyl  

rad ica l  

Ethylenic  Al lyl ic  

b 2 970.0 b 2 847.0 

a 1 1033.7 a I 902.7 
b 2 1111.4 b 2 1062.7 

a I 1303.4 a 1 1129.9 

b2 1495.0 b 2 1255.9 

a I 1770.0 a I 1562.0 
b 2 3502.9 a I 3453.7 

a 1 3521.9 b 2 3524.4 

a I 3568.0 a I 3559.4 
o u t - o # p l a n e m o d e  a o u t - o # p l a n e m o d e  a 

bl 1039.1i a 2 672.9i 

b I 707.9 b I 577.3i 

a 2 991.7 b t 922.9 

a i denotes  i m a g i n a r y  frequency 

Pseudo-rotation Equipotential line 
coordinate ~ / 

\,,, v / /  
. \ \ \  ,, / /x 

I / ," \, / x \ j  
. . . . . .  . . . . .  

/ V 7 7  " 

/ /; \ \  2 . / "  

Allylic ce ~3. 

Fig. 3. P seudo ro t a t i on  reac t ion  
coordina te ,  cell s t ruc ture  and  

equi -potent ia l  l ine 

the equi-potential line (depicted by the dotted line) are shown in Fig. 3. The cell 
structure [16(b)], which is constructed from the neighboring domain of the 
stationary point of the potential energy surface, is important because it imposes 
the boundary condition on the nuclear wavefunction. An elucidation of the cell 
structure from the electronic structural point of view is interesting in the light of 
flexibility of the electronic structure. 
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3.2. Response property of the cell structure 

Canonical SOMO (singly occupied molecular orbital) and LUMO orbitals are 
drawn schematically in Fig. 4. The isomerization between the allylic and ethylenic 
structures must go through a SOMO-LUMO crossing. The correlation diagrams 
between the orbital energy {ek } and the occupation number {~7 k } are calculated. 
The space of rearrangement operator, i.e. the running range---of the suffix of the 
matrix, is limited in the three n orbitals, one of which is doubly occupied, the 
second being singly occupied, while the third is virtual within the UHF scheme. 
We have evaluated Eqs. (6) and (7) numerically using As = 10 -3 (amu)l/Ebohr. 
The rearrangements of the orbital occupation numbers are very small in the 
ethylenic cell, as is shown in Fig. 5(a). On the contrary, as shown in Fig. 5(b), 

Allylic Ethylenic 

Fig. 4. a LUMO, b SOMO patterns 
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Fig. 5. Energy-occupation number correlation diagram of UHF g-spin electron orbitals for a 
ethylenic and b allylic structures of the cyclopropenyl radical. ~1 (O) denotes LUMO (SOMO) 
pattern of the allylic (ethylenic) structure, ~2 (@) denotes SOMO (LUMO) pattern of the allylic 
(ethylenic) structure, and ~:3 (A) denotes the orbital which has a totally symmetric pattern. The 
changes are traced along the pseudorotation reaction coordinate 0, and the numbers 1, 2, 3, 4 and 
5 indicate that 0 is 5 °, 10 °, 15 °, 20 ° and 25 °, respectively 
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the occupation number of ~1, which has a LUMO orbital pattern of allylic 
cyclopropenyl radical from 0 = 5 ° to 0 = 25 °, increases in the allylic cell. The 
electrons are transported from the orbitals ~2 and ~3 to the orbital ~bl, and this 
characterizes the initial electronic process of the isomerization reaction from the 
allylic structure to the ethylenic structure. It can be said that the response o f  the 
electronic structure to the molecular vibration is small and hence the electronic 
structure is hard in the ethylenic cell. On the other hand, the response is large and 
the electronic structure is soft in the allylic cell. Moreover the ethylenic cell can 
be said to be larger than the allylic cell judging from the response property of the 
electronic structure. The small size of the allylic cell with respect to in-plane 
distortion is in agreement with the fact that the C~ symmetry allylic form is the 
transition state for the unconstrained potential surface for the pseudorotation. 

4. Concluding remarks 

We have applied isomorphic electron orbitals to the problem of the molecular 
design of a soliton valve. The leading role of the softest vibrational mode for the 
electron transport process is stressed by the quantum mechanical treatment of the 
rearrangement operator for the isomorphic electron orbitals. The electronic 
flexibility of the cyclopropenyl radical against molecular vibrations, which is 
important for the function of the molecular device, is well characterized by the 
hardness and softness of the electron structure in terms of the orbital energy- 
occupation number correlation diagram. It is concluded that the isomorphic 
electron orbitals provide a good starting point for the molecular design of the 
vibronic systems. 
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